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An analytical approach for determining strain ellipsoids
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Abstract
A new method is proposed to determine strain ellipsoids from measurements made on planar surfaces. It is similar in theory to that of Robin,
P.-Y.F., [2002. Determination of fabric and strain ellipsoids from measured sectional ellipses e theory. Journal of Structural Geology 24,
531e544], but is more flexible and hence more applicable because it can incorporate different kinds of strain measurements, especially
when only the pitches of the long/short axes of strain ellipses are measured on planar surfaces. It is not necessary to estimate both the relative
and absolute strain ellipsoids at the same time, as Robin, P.-Y.F., [2002. Determination of fabric and strain ellipsoids from measured sectional
ellipses e theory. Journal of Structural Geology 24, 531e544] and others did. The former may be estimated before the latter. The feasibility
of the proposed method is demonstrated by three artificial examples and one real example.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Estimation; Strain ellipsoids; Sectional measurements; Strain markers
1. Introduction

One goal of structural geologists is to determine the finite
strain that a rock underwent during plastic deformation, since
this is important in reconstructing the deformation history the
rock has been through. Strain markers such as deformed peb-
bles, particles, fossils, reduction spots, and so forth are useful
strain recorders in nature. They are commonly used to esti-
mate strain in rocks. Among the numerous measurement
techniques available (e.g. Ramsay, 1967; Ramsay and Huber,
1983), most produce an estimate of a strain ellipse on a pla-
nar surface. Only a few lead to an estimate of the strain
ellipsoid. However, these may not be applicable to sectional
measurements of any kind, as will be described below. In this
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regard, it is common practice to construct the strain ellipsoid
from measured ellipses on several planar surfaces. A key
problem in constructing a strain ellipsoid is how to establish
a strain tensor from the passive strain markers. This problem
can be solved graphically through converting strain measure-
ments on three non-parallel surfaces into their counterparts
on three mutually perpendicular surfaces. In the latter case,
the strain tensor is readily established from the converted
values (Ramsay, 1967).

Alternatively, numerical algorithms (Shimamoto and Ikeda,
1976; Oertel, 1978; Milton, 1980; Gendzwill and Stauffer,
1981; Owens, 1984; Shao and Wang, 1984; De Paor, 1990;
Robin, 2002) have been proposed for the same purpose. They
differ in how they tackle the consistency of sectional data, as
well as other aspects. Most use iteration to examine the best-
fit strain ellipsoid. They are not completely robust in finding
a local minimum to which the solution may proceed (Robin,
2002; see his brief review in the introduction). Robin (2002)
proposed a direct and non-iterative algorithm that solves a set
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of linear equations obtained through minimizing the sum of
norms of ‘‘error matrices’’ for a strain ellipsoid.

The main purpose of this study was to develop a new
algorithm for determining analytically a strain ellipsoid from
sectional data. The algorithm is somewhat similar, in terms
of directness and a lack of need for iteration, to Robin’s
algorithm (2002), because both look for the solution through
finding the global minimum. However, this one appears
more flexible and, therefore, is more widely applicable,
because sectional measurements of variable kinds may be
incorporated together in the calculation of a strain ellipsoid.

The terms and symbols used in this paper are listed in
Table 1.

2. Basic equations for sectional measurements

In the Cartesian system (Fig. 1), a strain ellipsoid is a quad-
ric surface centered at the origin. It is described by the follow-
ing equation:

½ x y z �

2
4b11 b12 b13

b21 b22 b23

b31 b32 b33

3
5
2
4 x

y
z

3
5¼ 1 ð1Þ

where x, y and z are the coordinates of a point on the ellipsoid.
The middle matrix is symmetrical, so bij¼ bji (i, j¼ 1, 2, 3). It
is called the shape matrix (Shimamoto and Ikeda, 1976), or the
inverse shape matrix (Wheeler, 1989). The principal axes of
the ellipsoid have the same directions as the eigenvectors
of the shape matrix, but different dimensions from the
eigenvalues,
Table 1

List of symbols and their definitions

Symbols Definitions

x, y, and z Coordinates of a point on the ellipsoid in the real state.

x0, y0, and z0 Coordinates of a point on the ellipsoid in the rotated state

bij Elements of a shape matrix.

b0ij Elements of a transformed shape matrix.

b Normalized shape-matrix vector.

b* The relative solution of a shape-matrix vector.

b The absolute solution of a shape-matrix vector.

b1, b2, and b3 Eigenvalues of a shape matrix.

31, 32, and 33 Magnitudes of the principal axes of an ellipsoid.

N Number of strain measurements.

ai and bi Dip and dip angle of the i-th measured planar surface.

qi Pitch of the long axis of a strain ellipse on the i-th planar

Ri Axial ratio of a strain ellipse on the i-th planar surface.

li1 and li2 Half lengths of the long and the short axes of a strain elli

T(i) (1) Rotation matrix, and

t
ðkÞ
ij (2) Elements of a rotation matrix.

vi and wi Datum vectors.

F Objective function.

U Datum matrix.

A A set of all strain measurements.

Ai Subset of measurements with different kinds of known va

ki Scale parameter.

pi and qi
31 ¼
1ffiffiffiffiffi
b3

p ; 32 ¼
1ffiffiffiffiffi
b2

p ; 33 ¼
1ffiffiffiffiffi
b1

p ð2Þ

where b1, b2, and b3 are the corresponding eigenvalues of the
shape matrix (b1� b2� b3> 0); 31, 32, and 33 are the corre-
sponding magnitudes of the principal axes of the ellipsoid
(31� 32� 33> 0).

We consider N strain measurements made directly, or other-
wise calculated, on planar surfaces. On the i-th plane, we mea-
sure the dip direction (ai) and dip angle (bi) of the surface,
and the pitch (qi) of the long axis of an ellipse on the surface,
and/or the ratio (Ri) of the long axis to the short axis, and/or
the magnitudes (li1 and li2) of the short and long axes
(i¼ 1,2,.,N ). The pitch is defined here as the intersection an-
gle between the long axis of the ellipse and the western trend
of the plane after it has been rotated about a vertical axis until
it dips toward the north, or the X-axis (Fig. 1). For the sake of
convenience, the axial lengths are referred to as those mea-
sured on planar surfaces through the center of the strain ellip-
soid. It is necessary, as shown below, to have these data in
order to estimate the absolute strain ellipsoid. However, mea-
sured strain ellipses on surfaces that do not cut through the
center of the ellipsoid are very common in the field, and can-
not be used directly for this purpose. They need to be modified
to the strain ellipses on parallel planes through the center by
multiplying them with a scale constant depending upon each
measurement. Generally, it is difficult to gain the knowledge
needed for modification in the field.

For each individual measurement, we can perform a series
of rotations to transform a strain measurement plane into a hor-
izontal one where the long axis of the strain ellipse is aligned
Comments

Eqs. (1) and (4).

. Eqs. (4) and (6).

i, j¼ 1,2,3; Eqs. (1) and (7).

See Section 2.

Eqs. (9), (11) and (12).

Eq. (15).

Eq. (15).

b1� b2� b3> 0; Eq. (2).

31� 32� 33> 0; Eq. (2).

i¼ 1,2,.,N; Eq. (3).

surface. i¼ 1,2,.,N; Eq. (3).

i¼ 1,2,.,N; Eq. (3).

pse on the i-th planar surface. i¼ 1,2,.,N; Eqs. (3), (6), (7a), (7b),

and (16)e(17).

Eq. (3).

i, j¼ 1,2,3; k¼ 1,2,.,N; Eqs. (3),

(7)e(8), and (16)e(17).

i¼ 1,2,.,N; Eqs. (3) and (10)e(13).

Eq. (12).

Eqs. (12) and (13).

Eqs. (12)e(14).

riables. i¼ 1,2,3; Eqs. (12)e(14).

Eqs. (15) and (17).

Eq. (17).
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Fig. 1. Elements of strain measurements made on the planar surface in the Cartesian coordinate system. The rectangle, marked by three dashed lines and one thick

line, represents a part of the horizon (namely, the XeY plane). See the text for symbol definitions.
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with the X-axis (Fig. 1). This can be implemented by rotating
around the Z-axis with an angle of �ai, around the Y-axis with
an angle of �bi, and finally around the Z-axis with an angle of
qi� 90�. Thus, we can use matrix T(i) to express these
rotations.
TðiÞ ¼

2
64 t
ðiÞ
11 t

ðiÞ
12 t

ðiÞ
13

t
ðiÞ
21 t

ðiÞ
22 t

ðiÞ
23

t
ðiÞ
31 t

ðiÞ
32 t

ðiÞ
33

3
75¼

2
4 cos ai �sin ai 0

sin ai cos ai 0
0 0 1

3
5
2
4 cos bi 0 �sin bi

0 1 0
sin bi 0 cos bi

3
5
2
4 cosð90� � qiÞ sinð90� � qiÞ 0
�sinð90� � qiÞ cosð90� � qiÞ 0

0 0 1

3
5 ð3Þ
After applying the transformation operation defined in
Eq. (3), a point (x, y, z) of the ellipsoid in the previous coordinate
system is transformed into a new point (x0, y0, z0) as follows:

½ x y z �T¼ TðiÞ½ x0 y0 z0 �T ð4Þ

where superscript T is the operation of matrix transposition.
Inserting Eq. (4) into Eq. (1) and letting z0 ¼ 0 leads to the

following equation:
½ x0 y0 �
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The strain ellipse on a plane in the new coordinate system is
described by:

½ x0 y0 �
�

l�2
i2 0
0 l�2

i1

� �
x0

y0

�
¼ 1 ð6Þ

The above equation is valid only for strain measure-
ments on the planes through the center of the strain ellip-
soid, as was stated above. Strain measurements on the
planes that do not pass the center are discussed in next
section.

Because Eqs. (5) and (6) have the same shape matrix, we
have the following expressions:
t
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Until now this procedure closely parallels that of Robin
(2002; Eq. 5) and Owens (1984; Eq. 19).

It is noteworthy that, where measured plane surfaces are
principal planes, all non-diagonal elements in the shape matrix
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resulting from the transformation are zero. Let b0ij stand for the
elements of the transformed shape matrix. Because b013 ¼ 0,
and b023 ¼ 0, we have two more independent linear equations.
This is beyond the scope of this paper, and will not be dis-
cussed below.

Measurements on the plane surfaces that are not principal
planes are the most common in the field. We now consider
the minimal number of measurements of different types neces-
sary to determine a strain ellipsoid. For one measurement with
three known variables such as qi, li1, and li2, there are three in-
dependent linear Eqs. (7a)e(7c). Because the shape matrix
(see Eq. (1)) has six unknown elements, two such independent
measurements are required to determine an absolute strain
ellipsoid.

Dividing Eq. (7a) by Eq. (7b) and inserting Ri¼ li1/li2 leads
to the following equation:�
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Similarly, for a measurement with two known variables
such as qi, and Ri, there are two independent linear Eqs. (7c)
and (7d). But in this case, the number of unknown elements
in the shape matrix is five. This indicates that at least three in-
dependent measurements are needed to determine a relative
strain ellipsoid, including the directions and relative magni-
tudes of its maximum, intermediate and minimum axes.

For a measurement with only one known variable qi, there
is just one linear Eq. (7c). At least five measurements of this
kind are insufficient to determine a relative strain ellipsoid.
They are intrinsically inadequate in the determination, even
where more can be measured (see below), and must be used
together with other kinds of measurements.

3. Analytical solution for a relative strain ellipsoid

For N strain measurements, as obtained above, we deter-
mine a set of linear equations for the shape matrix. There is
an analytical solution for these equations if they are deter-
mined, or an optimal solution if they are over-determined. In
the former case, the Gaussian elimination method may directly
be used to solve the equations for the shape matrix. In the lat-
ter case, numerical algorithms are needed.

We assume that a set of strain measurements, either with
two known variables such as qi and Ri or with one known vari-
able qi, can lead to a set of over-determined linear Eqs. (7c)
and (7d). These two kinds of equations have geometrical
meaning in the six-dimensional space. The solution of the
shape-matrix vector b¼ [b11, b12, b13, b22, b23, b33]T is perpen-
dicular to the two respective kinds of datum vectors in the
following.h
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In order to obtain a solution for the relative shape matrix,
we may assume that the shape-matrix vector can be located
on a unit hyper-sphere centered at the origin. This assumption
leads to the following expression:

bTb¼ 1 ð9Þ
We can normalize the above two datum vectors by their

lengths so that the modified datum vectors are:

vi ¼ ½vi1; vi2; vi3; vi4; vi5; vi6� ð10aÞ

wi ¼ ½wi1;wi2;wi3;wi4;wi5;wi6� ð10bÞ
This normalization will guarantee the same weight of each

datum vector on the value of the objective function defined
below.

Eqs. (7c) and (7d) can be rewritten as:

vT
i b¼ 0 ð11aÞ

wT
i b¼ 0 ð11bÞ

In order to solve the over-determined equations, an objec-
tive function (F ) is defined as the sum of the squared projec-
tions of the modified datum vectors on the shape-matrix
vector,

F¼
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i ð13Þ

A¼ A1WA2WA3 ð14Þ

where A1, A2 and A3 are referred to as the subsets of sectional
measurements with three known variables such as qi, li1, and
li2, with two known variables such as qi and Ri, and with
a known variable qi, respectively.

By minimizing the objective function under the constraint of
Eq. (9), we have an optimal solution of the shape-matrix vector.
This changes the estimation of a strain ellipsoid into an optimi-
zation problem. For this kind of problem, as proved by Shan
et al. (2003) and Fry (1999), the solution is the eigenvector as-
sociated with the least eigenvalue of the symmetrical matrix U.
However, in relation to the optimal solution of the shape-matrix
vector, the negative of it is also a solution. One of these leads to
a realistic strain ellipsoid having all positive axial lengths,
while the other leads to an unrealistic ellipsoid having at least
one negative axial length. The latter is discarded.
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4. Dimension determination of a strain ellipsoid

In the case of sectional measurements with three known
variables such as qi, li1, and li2, Robin (2002) regarded li1
and li2 as two independent variables in calculating the absolute
shape matrix. This may not be necessary because these two
variables of a measured ellipse are closely related in dimen-
sion to those of other ellipses. This can be illustrated from
Eq. (7d). In fact, an absolute strain ellipsoid can be estimated
after obtaining a relative strain ellipsoid, as described below.

Through applying the proposed method to these data, an
optimal solution of the shape-matrix vector, b� ¼ ½b�11; b

�
12;

b�13; b
�
22; b

�
23; b

�
33�, can be obtained. A relationship between

the relative ðb�Þ and the absolute ðbÞ solutions is given as:

b¼ kib
� ð15Þ

where ki is the unknown scale parameter for the i-th
measurement.

Inserting Eq. (15) into Eqs. (7a) and (7b) leads to the fol-
lowing expressions:
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In terms of solving these two linear single-variable equa-
tions, there are many methods, such as the least square
method, the moment method used above, and so forth. Among
them, the least square method is adopted here, resulting in
a simple estimate of the scale parameter ki as follows:
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5. Procedure for the proposed method

The procedure for the proposed method is described as
follows.

(1) Eq. (3) is used to rotate each measured planar surface to
the horizontal with the long axis directed toward the
X-axis of the ellipse.
(2) Eq. (8a) and/or Eq. (8b) are used to calculate the coeffi-
cients of the linear equation(s) describing the rotated
ellipse on the surface.

(3) The calculated coefficients are divided by their lengths so
that the datum vector vi and/or datum vector wi are
determined.

(4) Eq. (13) is used to calculate the elements of rank-6 matrix U.
(5) The Jacobian method is used to determine the eigenvalues

and eigenvectors of the matrix.
(6) The least eigenvector is sought as an optimal solution of

the shape-matrix vector b*.
(7) Eq. (17) is used to estimate the scale parameter ki.
(8) Eq. (1) is used to construct the shape matrix.
(9) From the constructed shape matrix, the directions and the

magnitudes (see Eq. (2)) of the shape matrix are deter-
mined using the Jacobian method.
6. Examples

In order to demonstrate the feasibility of the proposed
method, three artificial examples and one real example are
used. The artificial examples (with and without measurement
errors) were generated at random under a unique prescribed
strain (Table 2).
6.1. Artificial examples without measurement errors
No measurement errors were included in the first and the
second artificial examples. This is unrealistic but justifiable
in validating the new method. For each controlled measure-
ment, the planar surfaces were sampled evenly at random
from 0� to 360� for dip directions and, from 0� to 90� for
dip angles. The elements of strain ellipses were calculated un-
der the prescribed strain tensor (Table 2).

The first artificial example consists of three strain measure-
ments with two known variables such as qi and Ri (Table 3).
Table 2 lists the results from applying this method. It is similar
to the prescribed value, indicating that the method is feasible
for determining a strain ellipsoid from sectional measure-
ments. The close agreement between the prescribed and esti-
mated strain ellipsoids results from the lack of measurement
errors in this artificial data.

In the second artificial example, there are two kinds of mea-
surements, with two known variables such as qi and Ri and
with one known variable such as qi, having a data number of
2 and 3, respectively (Table 3). Strain inferred from these
data through using the above method is listed in Table 2.
This also does not differ from the prescribed strain.
6.2. Artificial example with measurement errors
The third artificial example has the same planar surfaces
and the same axial ratios to those of the second example
(Table 3). They only differ in the value of pitches. For the
sake of simplicity, measurement errors are included by



Table 3

Strain measurements in the artificial and the real examples

Examples No Planar surfaces Strain ellipses

Dip direction

ai (�)

Dip angle

bi (�)

Pitch

qi (�)

Axial ratio

Ri

Artificial

1 1 30.61 54.12 94.12 1.83

2 348.46 17.07 22.61 1.18

3 143.28 23.66 64.05 1.38

2 1 30.61 54.12 94.12 1.83

2 348.46 17.07 22.61 1.18

3 143.28 23.66 64.05

4 32.24 50.44 95.09

5 291.44 53.27 87.29

3 1 30.62 54.12 96.12 1.83

2 68.29 46.35 20.61 1.18

3 267.66 8.06 62.05

4 291.44 53.27 97.09

5 358.23 65.36 85.29

Real 1 305 78 82 1.92

2 205 87 8 1.98

3 133 9 54 1.95

Measurement errors do not exist in the first and the second artificial examples,

but in the third artificial example. The real example is taken from Zheng and

Chang (1985).
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stochastically adding either 2� or �2� to the pitches of the sec-
ond example. However, other ways or larger angular values
may be considered to simulate measurement errors in data,
but this is beyond the scope of this paper.

Application of the method to this example gives rise to the
result listed in Table 2. The estimated strain ellipsoid closely
resembles the prescribed one. The resemblance is due to the
assignment of small measurement errors to the pitches.
6.3. Real example
The real example (Table 3) is taken from Zheng and
Chang (1985). It consists of three sectional measurements
of Carboniferous conglomerates in Zhoukoudian, west of
Beijing. These sedimentary rocks, as a part of the cover of
the North China platform, were slightly metamorphosed,
and intensely deformed in the Triassic and Jurassic. Table 2
lists the results using the proposed method, and also that of
Zheng and Chang (1985) who used the method of Gendzwill
and Stauffer (1981). Both give similar principal directions
(Fig. 2) and roughly similar axial ratios. The strain ellipsoid
obtained by us and by Zheng and Chang (1985) has a Lode’s
parameter (Hossack, 1968) of �0.626 and �0.936, respec-
tively. Both indicate a strain state of uniaxial apparent
flattening.

Orife and Lisle (2003) suggested using stress difference to
investigate the difference between two stress tensors (D). Ac-
cording to their statistical study, stress tensors are considered
very similar if D< 0.66, similar if 0.66<D< 1.01, different
if 1.01<D< 1.71, or very different if D> 1.71. This ap-
proach was used herein to quantify the similarity between



Fig. 2. Comparison between estimated principal directions (Table 2), using the

proposed method (blank symbol) and the method of Gendzwill and Stauffer

(1981) (black-filled symbol), respectively. Equal-area, lower-hemispheric

projection. Rectangles, triangles, and circles represent the maximum, the

intermediate and the minimum principal directions, respectively.
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the two estimated strain ellipsoids. The calculated difference is
0.39, indicating the similarity between the two estimated
strains.

However, the strain ellipsoid obtained in the above way dif-
fers slightly from that by Zheng and Chang (1985). The differ-
ence is mainly ascribed to measurement errors that lead to the
inconsistency of strain ellipses in variable sections, and the use
of differing algorithms in calculation.
Table 4

Eigenvalues and eigenvectors of datum-vector matrix for two sets of measuremen

Data number No Eigenvalues Eigenvectors

b11 b12

5 1 6.00981 0.32927 0.59499

2 2.25952 0.13048 0.59357

3 1.44555 �0.14799 0.31153

4 0.28512 �0.51251 0.44341

5 0.00000 0.76429 0.00000

6 0.00000 �0.07650 0.00000

6 1 6.01085 0.32867 0.59476

2 3.45512 0.08742 0.06580

3 2.16859 0.08600 0.64242

4 0.36543 �0.53568 0.47878

5 0.00000 0.76446 0.00000

6 0.00000 �0.07482 0.00000

The first set consists of five measurements extracted from the second artificial exam

ment. The additional measurement, generated at the same prescribed strain, is 315.

matrix vector of [0.10717, 0.00000, 0.00000, 0.24114, 0.00000, 0.96455] for the pr

related to the minimum eigenvalues.
7. Discussions and conclusions

A new method is developed in this paper to calculate
a strain ellipsoid from strain measurements made on planar
surfaces. For each measurement with known variable(s) such
as qi or/and Ri, one or two linear equations describing the
shape matrix are established. The linear character of these
equations indicates that the shape-matrix vector is perpendic-
ular to a hyperplane in a six-dimensional space consisting of
six independent elements of the shape matrix. We have solved
an optimal problem under the assumption that the shape-
matrix vector can be located on a unit hyper-sphere centered
at the origin. It is recognized that the eigenvector of data
matrix associated with the least eigenvalue is an optimal
solution of the shape-matrix vector. Application of this method
to four examples has demonstrated its feasibility in deter-
mining a strain ellipsoid.

The proposed method and that of Robin (2002) are similar,
in terms of directness and lack of iteration in calculation.
However, the newer method is more flexible because more
kinds of strain measurements can be considered. Three types
of strain measurements are recognized: (A) measurements
with three known variables such as qi, li1, and li2 where the
measured plane is through the center of the strain ellipsoid;
(B) measurements with two known variables such as qi and
Ri, and (C) measurements with a single known variable qi.
Measurements of variable kinds are readily incorporated in
the calculation of the strain ellipsoid by using the proposed
method, whereas Robin’s method can only deal with the first
two types A and B. As shown herein, a relative strain ellipsoid
and an absolute magnitude can be estimated separately. The
former may be estimated analytically before obtaining the lat-
ter. It is not necessary during calculation to incorporate the
scale parameter as an independent variable with the shape-ma-
trix variables, as Robin (2002) did. This incorporation takes
much more time and memory, although it is not a problem
for modern high-speed, high capacity personal computers.
ts of the third kind

b13 b22 b23 b33

�0.45097 �0.39024 �0.42213 0.06098

0.70372 �0.15464 0.33306 0.02416

�0.54696 0.17540 0.74187 �0.02741

0.04737 0.60742 �0.40063 �0.09491

0.00000 0.64487 0.00000 0.00004

0.00000 0.09060 0.00000 0.99294

�0.46062 �0.38953 �0.41308 0.06086

0.78073 �0.10361 �0.60621 0.01619

0.41276 �0.10192 0.63158 0.01593

�0.08894 0.63488 �0.25098 �0.09920

0.00000 0.64467 0.00000 �0.00215

0.00000 0.09202 0.00000 0.99294

ple (Table 3), while the second set is the first set and an additional measure-

59� in dip direction, 89.96� in dip angle, and 89.96� in pitch. There is a shape-

escribed strain. Note the difference between it and one of the two eigenvectors
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For measurements made on plane surfaces that are not par-
allel to the principal planes, a minimum number of indepen-
dent strain measurements are required to determine a strain
ellipsoid. They are 2 and 3 for types A and B, respectively.
The number depends on the type of strain measurement. The
fewer elements of a strain ellipse measured on a planar sur-
face, the more measurements are needed to determine the
strain ellipsoid. Type A measurements are necessary to deter-
mine the absolute strain ellipsoid, while type B are needed to
calculate the relative strain ellipsoid.

A problem arises over the independence of type C measure-
ments in determining a strain ellipsoid. To show this issue, a set
of type C measurements was extracted from the second artifi-
cial example (Table 3), and processed. In Table 4, both the two
smallest eigenvalues of data matrix U are zero, indicating the
existence of a two-dimensional subspace in which the objec-
tive function reaches minimum, or zero. Things never appear
to change much if one or more measurement of this kind is
added to the data set (Table 4). In such cases, the eigenvector
related to the minimum eigenvalue is not always identical to
the solution of the shape-matrix vector, analogous to the results
from stress inversions (Shan and Fry, 2006). This under-
determinability is intrinsic in that Eq. (7) is satisfied by a strain
state having the rock shrink or expand evenly in all directions.
In this sense, type C measurements must be used together with
either type A or B to determine the strain ellipsoid. The role
played by type C measurements, when not in combination
with other kinds, in reducing the parameter space, will be
addressed elsewhere (Shan et al., submitted for publication).
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